Abstract
In this work, we propose an extension of the phase field model for the modeling of hydraulic fracturing or cracking in heterogeneous saturated porous media. The involved extensions comprise: (a) taking into account interfacial damage between the inclusions and the matrix; (b) modeling fluid flow within both matrix cracks and interfacial cracks; (c) the possibility to handle geometries of the heterogeneous media in the form of regular grids of voxels e.g. as obtained from experimental imaging techniques. The developed numerical framework is based on the phase field method with a regularized description of both bulk and interface discontinuities, extended to a fully coupled hydro-mechanical framework. Both 2D and 3D examples are presented for hydro-mechanical microcracking initiation and propagation in voxel-based models of complex heterogeneous media with interfacial damage between the inclusions and the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.