Abstract

We present a family of phase-field models for fracture in piezoelectric and ferroelectric materials. These models couple a variational formulation of brittle fracture with, respectively, (1) the linear theory of piezoelectricity, and (2) a Ginzburg–Landau model of the ferroelectric microstructure to address the full complexity of the fracture phenomenon in these materials. In these models, both the cracks and the ferroelectric domain walls are represented in a diffuse way by phase-fields. The main challenge addressed here is encoding various electromechanical crack models (introduced as crack-face boundary conditions in sharp models) into the phase-field framework. The proposed models are verified through comparisons with the corresponding sharp-crack models. We also perform two dimensional finite element simulations to demonstrate the effect of the different crack-face conditions, the electromechanical loading and the media filling the crack gap on the crack propagation and the microstructure evolution. Salient features of the results are compared with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.