Abstract
A phase-field evolution equation (a kind of time dependent Ginzburg–Landau equation), in which order parameter ( φ) transition in width restricted within a unit grid, was solved using an implicit finite difference method. The direct implicit scheme would have an ability to correspond to a long-range order parameter correlation, which appeared around a phase transition. When the transition width is restricted within a unit grid, a skew directional finite difference is necessary to obtain an isotropic growth rate. Using these schemes, an isotropic growth shape was obtained for a single composition system with a latent heat free condition. In the case of a large latent heat condition, which is the case for Y123 crystal growth, we could obtain a faceted growth shape without using any anisotropic parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.