Abstract

In this work, the experimental data for the equilibrium conditions of methane and carbon dioxide clathrate hydrates in the presence of (0.1 mass fraction methanol+0.03, 0.1 mass fraction MgCl2) and (0.1, 0.2 mass fraction ethylene glycol+0.1 mass fraction MgCl2) aqueous solutions at different temperature and pressure range 263.74 to 280.54K and 0.98 to 8.02MPa, respectively and for various concentrations of inhibitors are reported, which is not available in open literature. The equilibrium pressure–temperature curves were generated using an isochoric pressure-search method. The experimental results of methane and carbon dioxide clathrate hydrates in the presence of pure water and the above mentioned aqueous inhibitor solutions are compared with some selected experimental data from the literature in the presence of pure water, single glycol, alcohol or salt aqueous solutions to validate the experimental result and to show the inhibition effects of the aqueous solutions used in this work. The results show that the phase equilibrium of the quaternary system (H2O+ethylene glycol/methanol+CH4/CO2+MgCl2) is shifted to higher pressures/lower temperatures compared to the phase equilibrium of pure CH4/CO2 due to the inhibition effect. Also, it has been observed that the quaternary system containing methanol has a more inhibition effect than the quaternary system containing ethylene glycol at the same mass fraction of the inhibitor in the aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.