Abstract

The available sets of data for the phase equilibrium of long chain n-alkanes with 10 or more carbon atoms in supercritical ethane were studied to determine if the phase equilibrium pressure can be predicted from the number of carbon atoms and system temperature. It has previously been shown that for the phase equilibria of heavy n-alkanes in supercritical propane there exists, at constant temperature and mass fraction, a linear relationship between the number of carbon atoms and the bubble/dew point pressure. Published data in the temperature range 310–360 K was obtained from a literature survey and, where required, additional data was measured using a high-pressure equilibrium cell. It was found that linear relationships exist and that these relationships can be used to predict the phase equilibrium pressure within 4% of experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.