Abstract

We review in detail recent advances in our understanding of the phase structure and the phase transitions of hadronic matter in strong magnetic fields B and zero quark chemical potentials µf. Many aspects of QCD are described using low-energy effective theories and models such as the MIT bag model, the hadron resonance gas model, chiral perturbation theory, the Nambu-Jona-Lasinio (NJL) model, the quark-meson (QM) model and Polyakov-loop extended versions of the NJL and QM models. We critically examine their properties and applications. This includes mean-field calculations as well as approaches beyond the mean-field approximation such as the functional renormalization group (FRG). Renormalization issues are discussed and the influence of the vacuum fluctuations on the chiral phase transition is pointed out. Magnetic catalysis at T = 0 is covered as well. We discuss recent lattice results for the thermodynamics of nonabelian gauge theories with emphasis on SU(2)c and SU(3)c. In particular, we focus on inverse magnetic catalysis around the transition temperature Tc as a competition between contributions from valence quarks and sea quarks resulting in a decrease of Tc as a function of B. Finally, we discuss recent efforts to modify models in order to reproduce the behavior observed on the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.