Abstract
This article summarizes our studies of phase chemistry and precipitation reactions in a variety of maraging steels. The roles of different phases and alloying elements are investigated by comparing the behavior of different steels. The phases considered are Ni3Ti, Fe7Mo6 μ phase, Fe2Mo Laves phase, ω phase, Ti6Si7Ni16 G phase, “Z phase,” austenite, and α matrix. The alloying elements discussed are Ti, AI, Mo, Si, Mn, Ni, Cr, and Co. By comparing the aging behavior of both commercial steels and model alloys, a major role of Co is confirmed to be the lowering of the matrix solubility of Mo. Of the two main hardening elements in maraging steels (namely, Ti and Mo), Ti is much more active than Mo in the very early stage of precipitation. The main Mo-rich precipitate found in this work was Fe7Mo6μ phase instead of Laves phase. The precipitation of Mo is modified by the presence of Ti. ω phase appears only in Ti-free alloys, especially when aged at a low temperature. The quantity of Ni-containing precipitates and the presence of Cr in the steels change the austenite reversion behavior. Other phases, such as G phase and “Z phase,” contribute to age hardening in different types of maraging alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.