Abstract

We fabricated eicosane/poly(vinylidene fluoride) (PVDF) core/shell nanofibers by melt coaxial electrospinning as potential heat-storage applications. Eicosane, a hydrocarbon with melting point near the human body temperature and high latent heat, was chosen as the core material. Melted eicosane and PVDF solutions were coaxially electrospun using a double spinneret, in which melted eicosane was fed at 0.090–0.210 mL/h while the feeding rate of PVDF solution was maintained constant at 1.500 mL/h. The applied voltage and working distance were maintained constant at 12 kV and 17 cm, respectively. Good core/shell structure of nanofibers was observed at core feed rates of 0.090–0.180mL/h by transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis values indicated good thermal stability and high energy-storage capacity of the obtained nanofibers. The highest amount of eicosane encapsulated in the electrospun core/shell nanofibers reached 32.5 wt% at core feed rate 0.180 mL/h and had a latent heat of 77 J/g at melting point 39.2 °C. These shape-stabilized core/shell composite nanofibers showed good thermoregulating properties and had sufficiently high tensile strength for potential energy-storage applications, especially in smart textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.