Abstract

The phase behaviour of the discotic mesogen 2,3,6,7,10,11-hexahexylthiotriphenylene (HHTT) was investigated under hydrostatic pressures up to 500 MPa using high pressure optical and DTA measurements. The known enantiotropic phase transitions of HHTT, i.e. crystal (Cr)-helical phase (H), H-hexagonal columnar phase (Colh) and Colh-isotropic liquid (I) were observed up to 32 MPa. Application of hydrostatic pressures above 32 MPa results in the H and Colh phases becoming monotropic, depending upon the applied pressure. The H phase was observed as a monotropic phase in the pressure region between 32 and about 180 MPa. Thus, the I →Colh →H →Cr transition sequence appeared only on cooling under these pressures, while the Cr →Colh →I transition occurred on heating. Further increases in pressure above a second limiting value leads to the Colh phase becoming monotropic. Thus the I →Colh →Cr transition sequence appeared on cooling, while the Cr →I transition was observed on heating. The T vs. P phase diagram based on the data obtained in the heating mode contains two triple points; one is estimated as 40 MPa, 77.2°C for the Cr-H-Colh triple point and the other is extrapolated as 285 MPa, 118.3°C for the Cr-Colh-I triple point. These triple points define the upper limits for the appearance of the stable H and Colh phases, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.