Abstract

Continuous multiple-contact extractions of a crude oil were carried out with supercritical CO{sub 2} in order to assess the effect of the density and critical point of a solvent on the extraction performance as a function of process variables. Most of the extraction performance was solvent density dependent. In the vicinity of the critical point of CO{sub 2}, however, the solvent density was not the only parameter that governed extraction yields. The results of simulated distillation and gas chromatography-mass spectrometry analyses of extracts represented that the earlier extracts contained lighter compounds and the latter extracts contained progressively heavier compounds. As the extraction proceeded, relatively greater amounts of paraffinic compounds and lesser amounts of naphthenic and aromatic compounds were extracted. This compositional change occurring during a dynamic extraction was also ascertained by phase equilibrium calculations using the Soave-Redlich-Kwong equation of state and a component-lumping procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.