Abstract

Nanoparticles consisting of different molecular weight poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) copolymers and nanocapsules consisting of the same copolymers, but additionally with hexadecane as liquid core material were prepared by the miniemulsion process. The dependence of the morphology of block copolymer assemblies on the nanoconfinement was investigated. We introduced two nanoconfinement parameters, that are the nanoparticle diameter D and the shell thickness d; D was controlled by varying the concentration of surfactant in the miniemulsion, while d was controlled by the ratio hexadecane/copolymer. As the diameter D of the high molecular weight (Mw ∼ 203,700 g mol−1) P(S-b-MMA) nanoparticles increased, first Janus-particles (at D 1800 nm) were obtained. Nanocapsules with 0 < d < D also showed an onion-like structure. In both cases the outmost layer was PMMA as identified by XPS and the lamellar thickness was in agreement with theoretical considerations. Nanoparticles and nanocapsules prepared with a low-molecular weight (Mw ∼ 19,500 g mol−1) P(S-b-MMA) displayed patchy structures. This is the first time that the morphology of block copolymers was studied under double nanoconfinement in colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.