Abstract

Steady-state visual evoked potential (SSVEP) has been used to implement brain-computer interface (BCI) due to its advantages of high information transfer rate (ITR) and high accuracy. In recent years, owing to the developments of head-mounted device (HMD), the HMD has become a popular device to implement SSVEP-based BCI. However, an HMD with fixed frame rate only can flash at its subharmonic frequencies which limits the available number of stimulation frequencies for SSVEP-based BCI. In order to increase the number of available commands for SSVEP-based BCI, we proposed a phase-approaching (PA) method to generate visual stimulation sequences at user-specified frequency on an HMD. The flickering sequence generated by our PA method (PAS sequence) tries to approximate user-specified stimulation frequency by means of minimizing the difference of accumulated phases between our PAS sequence and the ideal wave of user-specified frequency. The generated sequence of PA method determines the brightness state for each frame to approach the accumulated phase of the ideal wave. The SSVEPs evoked from stimulators, driven by PAS sequences, were analyzed using canonical correlation analysis (CCA) to identify user's gazed target. In this study, a six-command SSVEP-based BCI was designed to operate a flying drone. The ITR and detection accuracy are 36.84 bits/min and 93.30%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.