Abstract
An electron backscatter diffraction (EBSD) study of the microstructure of TRIP steel during fatigue failure. Phase and crystal orientation study of a TRIP steel subjected to cyclic load induced fatigue. The relative fractions of austenite, ferrite and martensite are quantified within the strain field of a fatigue crack tip. This data is a subset of data supporting a wider study of the fatigue properties of multiphase steels used in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) and scanning electron microscopy (SEM-EBSD) used to examine the deformed microstructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.