Abstract

We study the modulation of programmable birefringent devices when they are illuminated by elliptically polarized light. We apply the theory to liquid-crystal display panels (LCDs). We consider the setups at the input and the output sides of the LCD as polarization-state generators (PSGs) or detectors (PSDs). We demonstrate that once the programmable birefringent device is described by a physical model, the amplitude and phase modulation depend only on the polarization state at the input of the device and on the output state detected behind it. This permits optimization of the modulation response only in terms of the input and the output states and the physical model of the device. The procedure to find the PSG and PSD configurations is detailed by using a geometrical interpretation of the states and the plates on the Poincaré sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.