Abstract
Antimicrobial resistance (AMR) is currently a global health concern, mostly caused by microorganisms like bacteria, viruses, parasites, and fungi that acquire resistance to antimicrobial drugs. Salmonella is responsible for a variety of diseases but mainly cause typhoid. The primary concern is the rise in resistance in both non-typhoid and typhoid strains of this species. To address this issue, it is necessary to identify novel targets and strategies for the development of new antibacterial drugs. Lipid A, a strong bacterial endotoxin that modulates the immune system in human, is a key component of the virulence factor generated during the salmonella infection. Lipid A is synthesized in case of Gram-negative bacteria by cascade of nine enzyme pathway. The second step in case of Lipid A biosynthesis, catalysed by LpxC, a Zn+ dependent metallo-amidase considered as rate limiting step. In this manuscript we have used protein-ligand interaction fingerprint (PLIF)–derived pharmacophore models to screen small molecules (natural products library from Zinc database, Asinex database, Thiophene analogues) against Salmonella typhi LpxC (StLpxC). Further top hit molecules were subjected to MD-simulation and ADMET studies. We identified three optimal compounds, s1_dl_mseq2, s1_ll_mseq2, and s2_ll_mseq8, that exhibit strong binding affinity towards the LpxC active site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.