Abstract

PurposeActivation of CB1 receptors, produces anticonvulsant effect accompanied by memory disturbance both in animal seizure tests and in patients with epilepsy. Few reports considered the role of CB2 receptor on seizure susceptibility and cognitive functions. The aim of the present study was to explore the effect of a selective CB2 receptor agonist β-caryophyllene (BCP) in models of seizures and cognition in mice. MethodsDose-dependent effects of BCP was studied in maximal electroshock seizure (MES) test, subcutaneous pentylenetetrazole (scPTZ) test and Morris water maze test. Phenytoin and diazepam were used as reference drugs in seizure tests. The effect of sub-chronic treatment with BCP for 7 days (50 and 100 mg kg−1) was assessed on status epilepticus (SE) induced by kainic acid (KA) model and oxidative stress through measurement of malondialdehyde (MDA) level in the hippocampus. The acute neurotoxicity was determined by a rotarod test. ResultsThe BCP exerted a protection in the MES test at the lowest dose of 30 mg kg−1 at the 4-h interval tested comparable to that of the referent drug phenytoin. The CB2 agonist was ineffective in the scPTZ test. The BCP displayed no neurotoxicity in the rotarod test. The BCP decreased the seizure scores in the KA-induced SE, which effect correlated with a diminished lipid peroxidation. The CB2 agonist exerted a dose-dependent decrease of latency to cross the target area during the three days of testing in the Morris water maze test. ConclusionOur results suggest that the CB2 receptor agonists might be clinically useful as an adjunct treatment against seizure spread and status epilepticus and concomitant oxidative stress, neurotoxicity and cognitive impairments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.