Abstract

A novel aspect of cellular signalling during the formation of the nervous system is the involvement of the messenger molecule nitric oxide (NO), which has been discovered in the mammalian vascular system as mediator of smooth muscle relaxation. NO is a membrane-permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cell types in model insects such as Locusta, Schistocerca, Acheta, Manduca, and Drosophila shows that the NO/cGMP pathway is required for the stabilization of photoreceptor growth cones at the start of synaptic assembly in the optic lobe, for regulation of cell proliferation, and for correct outgrowth of pioneer neurons. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO, and potentially also another atypical messenger, carbon monoxide (CO), orchestrate cell migration of enteric neurons. Cultured insect embryos are accessible model systems in which the molecular pathways linking cytoskeletal rearrangement to directed cell movements can be analyzed in natural settings. Based on the results obtained from the insect models, I discuss current evidence for NO and cGMP as essential signalling molecules for the development of vertebrate brains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.