Abstract

LB80380, a dipivoxil ester prodrug of LB80331 (metabolite, LB80317), is a novel antiviral agent for chronic hepatitis B (CHB). The pharmacokinetics of LB80331/LB80317 were evaluated in two clinical studies and a study with mice. The clinical studies were dose-escalating pharmacokinetic studies with six healthy subjects per single-dose group and six CHB patients per repeated-dose group. The mouse study was designed to measure the amounts of the phosphorylated portions of LB80331 and LB80317 in the liver. In healthy subjects receiving a single dose of LB80380, the plasma level of LB80331 increased as the dose increased. Although a high-fat diet delayed the time to the maximum concentration in plasma (T(max)) of LB80331, the area under the concentration-time curve from time zero to infinity was similar between the subjects in the fasted group and those in the group who consumed a high-fat diet. In CHB patients, the mean T(max) of LB80331 was 1.0 to 2.0 h postdosing at steady state. The steady-state plasma concentration of LB80331 declined in a monoexponential manner, and the apparent elimination half-life was 2.5 to 3.3 h. The steady-state plasma concentration of LB80317 was maximum at 3 to 8 h postdoing and declined in a monoexponential manner; the apparent elimination half-life was 45 to 62 h at the 30- to 240-mg doses, while LB80317 was measurable in plasma only at higher doses of 120 and 240 mg after the administration of the first dose of LB80380. Forty percent of the amount of LB80331/LB80317 in the mouse liver was detected as the phosphorylated form. In conclusion, LB80380 is rapidly absorbed and converted to LB80331. LB80317 has a long half-life at steady-state, supporting the use of a once-daily dosing regimen. The ingestion of a high-fat diet delays the rate of absorption of LB80380 without affecting the extent of absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.