Abstract

Implementation of pharmacogenetics (PGx) and individualization of drug therapy is supposed to obviate adverse drug reactions or therapy failure. Health care professionals (HCPs) use drug labels (DLs) as reliable information about drugs. We analyzed the Swiss DLs to give an overview on the currently available PGx instructions. We screened 4306 DLs applying natural language processing focusing on drug metabolism (pharmacokinetics) and we assigned PGx levels following the classification system of PharmGKB. From 5979 hits, 2564 were classified as PGx-relevant affecting 167 substances. 55% (n = 93) were classified as “actionable PGx”. Frequently, PGx information appeared in the pharmacokinetics section and in DLs of the anatomic group “nervous system”. Unstandardized wording, appearance of PGx information in different sections and unclear instructions challenge HCPs to identify and interpret PGx information and translate it into practice. HCPs need harmonization and standardization of PGx information in DLs to personalize drug therapies and tailor pharmaceutical care.

Highlights

  • “One size fits all” is the common strategy of dose-finding studies and the standard of drug therapy

  • We focused on the drug label (DL), one of the first sources for Health care professionals (HCPs) to check for information on a drug

  • If one sentence in one DL resulted in a higher PGx level compared to other sentences in the same DL, the highest annotated PGx level was considered in the analysis

Read more

Summary

Methods

Terms used to search for PGx information within the DLs were gathered based on preliminary analysis of DLs (in German language), literature [16,17,18], and the AmiKoWeb website (https://amiko.oddb.org). The selected search terms to identify specific genes were related to genetic polymorphisms (defined as genetic variants with a prevalence of more than 1% in a population [3]) known to be involved in drug metabolism. An expert group (CJ, KS, KH, HMzS) selected 25 eligible word stems corresponding to 245 different search terms for the NLP (for details, see Supplementary Fig. 1). The search identified 5979 hit sentences (corresponding to 606 chemical substances and 1399 different brand drugs) (Fig. 1).

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.