Abstract
Predictive health is a new and innovative healthcare model that focuses on maintaining health rather than treating diseases. Such a model may benefit from computer-based decision support systems, which provide more quantitative health assessment, enabling more objective advice and action plans from predictive health providers. However, data mining for predictive health is more challenging compared to that for diseases. This is a reason why there are relatively fewer predictive health decision support systems embedded with data mining. The purpose of this study is to research and develop an interactive decision support system, called PHARM, in conjunction with Emory Center for Health Discovery and Well Being (CHDWB®). PHARM adopts association rule mining to generate quantitative and objective rules for health assessment and prediction. A case study results in 12 rules that predict mental illness based on five psychological factors. This study shows the value and usability of the decision support system to prevent the development of potential illness and to prioritize advice and action plans for reducing disease risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.