Abstract

Aspergillus fumigatus is the most important mould pathogen in immunosuppressed patients. Suboptimal clearance of inhaled spores results in the colonisation of the lung airways by invasive hyphae. The first point of contact between A. fumigatus and the host is the lung epithelium. In vitro and ex vivo studies have characterised critical aspects of the interaction of invasive hyphae on the surface of epithelial cells. However, the cellular interplay between internalised A. fumigatus and the lung epithelium remains largely unexplored. Here, we use high-resolution live-cell confocal microscopy, 3D rendered imaging and transmission electron microscopy to define the development of A. fumigatus after lung epithelium internalisation in vitro. Germination, morphology and growth of A. fumigatus were significantly impaired upon internalisation by alveolar (A549) and bronchial (16HBE) lung epithelial cells compared to those growing on the host surface. Internalised spores and germlings were surrounded by the host phagolysosome membrane. Sixty per cent of the phagosomes containing germlings were not acidified at 24 h post infection allowing hyphal development. During escape, the phagolysosomal membrane was not ruptured but likely fused to host plasma membrane allowing hyphal exit from the intact host cell in an non-lytic Manner. Subsequently, escaping hyphae elongated between or through adjacent epithelial lung cells without penetration of the host cytoplasm. Hyphal tips penetrating new epithelial cells were surrounded by the recipient cell plasma membrane. Altogether, our results suggest cells of lung epithelium survive fungal penetration because the phagolysosomal and plasma membranes are never breached and that conversely, fungal spores survive due to phagosome maturation failure. Consequently, fungal hyphae can grow through the epithelial cell layer without directly damaging the host. These processes likely prevent the activation of downstream immune responses alongside limiting the access of professional phagocytes to the invading fungal hypha. Further research is needed to investigate if these events also occur during penetration of fungi in endothelial cells, fibroblasts and other cell types.

Highlights

  • Invasive fungal infections are a major cause of mortality, with more people dying from the ten main invasive fungal diseases than from tuberculosis or malaria (Brown et al, 2012)

  • Little is known about fungal development and host cell dynamics of internalised A. fumigatus spores during lung epithelia infection

  • A. fumigatus germlings growing on the epithelia surface showed a significant decrease in hyphal length, decreased spore swelling and increased hyphal tip branching when compared to those incubated the absence of host cells (P < 0.05) (Figures 1D– F)

Read more

Summary

Introduction

Invasive fungal infections are a major cause of mortality, with more people dying from the ten main invasive fungal diseases than from tuberculosis or malaria (Brown et al, 2012). Despite the development of new antifungal drugs and medical procedures, mortality rates for these diseases remain extremely high (Bongomin et al, 2017). This is the case of fungal lung infections caused by the opportunistic mould Aspergillus fumigatus for which mortality can reach 90% despite treatment. A. fumigatus is a saprophytic mould which produces millions of small conidia (2–3 μm) that are released into most human accessible habitats (Bennett, 2010; O’Gorman, 2011; KwonChung and Sugui, 2013; Knox et al, 2016). In some immunocompromised patients or those with a prior respiratory condition such as a past history of tuberculosis infection, COPD, asthma or cystic fibrosis, conidia can evade the host response, germinate and colonise the lung epithelium leading to the development fungal disease (Wasylnka et al, 2005; Mccormick et al, 2010; Kosmidis and Denning, 2015; van de Veerdonk et al, 2017; Gago et al, 2018)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.