Abstract

Advancing biotechnology spurs the development of new pharmaceutically engineered gene delivery vehicles. Poly(L-histidine) ¿PLH¿ has been shown to induce membrane fusion at endosomal pH values, whereas PLL has a well documented efficacy in polyplex formation. Therefore, N-Ac-poly(L-histidine)-graft-poly(L-lysine) ¿PLH-g-PLL¿ was synthesized by grafting poly(L-histidine) to poly(L-lysine) ¿PLL¿. PLH-g-PLL formed polyplex particles by electrostatic interactions with plasmid DNA ¿pDNA¿. The mean particle size of the polyplexes was in the range of 117 +/- 6 nm to 306 +/- 77 nm. PLH-g-PLL gene carrier demonstrated higher transfection efficacy in 293T cells than PLL at all equivalent weight ratios with pDNA. The inclusion of chloroquine as an endosomolytic agent enhanced transfection for both PLL and PLH-g-PLL gene carriers. PLH-g-PLL enhanced beta-galactosidase expression compared to PLL, but still increased in efficacy when chloroquine was included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.