Abstract
Resveratrol (Res) is known for its potential in treating various types of cancers, with a particular advantage of causing minimal toxic side effects. However, its clinical application is constrained by challenges such as poor bioavailability, low water solubility, and chemical instability in neutral and alkaline environments. In light of these limitations, we have developed a pH-responsive drug delivery nanoplatform, Res@ZIF-8/TA NPs, which exhibits good biocompatibility and shows promise for in vitro cancer therapy. Benefiting from the mild reaction conditions provided by zeolitic imidazolate frameworks (ZIFs), a "one-pot method" was used for drug synthesis and loading, resulting in a satisfactory loading capacity. Notably, Res@ZIF-8/TA NPs respond to acidic environments, leading to an improved drug release profile with a controlled release effect. Our cell-based experiments indicated that tannic acid (TA) modification enhances the biocompatibility of ZIFs. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT assay), Hoechst 33342/PI staining, cell scratch assay, Transwell and Reverse Transcription quantitative PCR (RT-qPCR) assays further demonstrated that Res@ZIF-8/TA NPs inhibited colon cancer cell migration and invasion, and promoted apoptosis of colon cancer cells, suggesting a therapeutic potential and demonstrating anti-cancer properties. In conclusion, the Res@ZIF-8/TA NPs pH-responsive drug delivery systems we developed may offer a promising avenue for cancer therapy. By addressing some of the challenges associated with Res-based treatments, this system could contribute to advancements in cancer therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biomedical materials research. Part B, Applied biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.