Abstract

To address cancer cell heterogeneity while endowing tumor specificity, the approach of charge shielding/deshielding was tested in vitro and in vivo with a paclitaxel loaded cationic micelle from a block copolymer of poly(l-histidine) (3.7kDa) and short branched polyethyleneimine (1.8kDa). The cationic micelle surface was shielded by electrostatically complexing with a negatively charged mPEG (2kDa)-block-polysulfadimethoxine (4kDa) (mPEG-b-PSDM) at pH7.4. Unshielded micelle at pH7.4 and deshielded micelle at tumor extracellular pH were readily taken up by two wild types of human cancer cell lines, MCF-7 breast adenocarcinoma and SKOV-3 ovarian carcinoma, while the uptake of the shielded micelle at pH7.4 was minimal. The preliminary in vivo results from a mouse model xenografted with MCF-7 showed significant anticancer therapeutic efficacy and deep penetration of the micelle into tumor tissues after deshielding, supporting the unique pH-responsive mechanism to treat acidic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.