Abstract

The Dabie-Sulu ultrahigh-pressure (UHP) terrane is the largest in the world. Mafic-ultramafic rocks occur as ubiquitous minor components in it, and preserve UHP index minerals such as coesite and microdiamond. Eclogites and garnet peridotites together with their country rocks including quartzofeldspathic, pelitic, psammatic, and carbonate rocks were subjected to coeval UHP meta-morphism during the Triassic collision between the Sino-Korean and Yangtze cratons. This review summarizes petrological and geochemical characteristics of eclogites, garnet peridotites, and UHP metasediments from published data and ongoing research in the Dabie-Sulu belt of east-central China. Parageneses of minerals from coesite-bearing eclogites encased in gneiss, garnet peridotite, and marble delineate clockwise P-T paths characterized by nearly isothermal decompression. Many eclogites have been overprinted by Barrovian-zone amphibolite- to granulite-facies assemblages, whereas others preserve primary igneous minerals and textures in the cores of coesite-bearing eclogitic blocks. In addition, eclogites contain UHP hydrous and carbonate phases including talc, epidote, zoisite, magnesite, and dolomite; these together with Ti-clinohumite, phlogopite, amphibole, chlorite, and possible talc in garnet peridotites and OH-topaz in kyanite quartzites document the role of hydrous mineral transport to the deep mantle in fluid-deficient UHP metamorphic regions. Both crustal- and mantle-derived garnet peridotites from the Dabie-Sulu region were recrystallized within the diamond stability field, with the Earth's lowest recorded geothermal gradient. <5°C/km, suggesting that UHP metamorphic recrystallization took place in a previously unrecognized, forbidden P-T region. Geochemical and isotopic data indicate that Dabie-Sulu mafic-ultramafic rocks have diverse origins; their compositions in some cases have been complicated by metamorphic recrystallization, crustal contamination, and fluid metasomatism. Nevertheless, REE geochemical and Nd isotope data clearly indicate that they have “continental” affinities and cannot represent a subducted Tethyan oceanic slab. Garnet peridotites and their enclosing eclogites display variable isotopic compositions; mantle-derived fragments preserve a mantle signature, whereas crust-hosted mafic-ultramafics display distinct crustal contamination and metasomatism. Among the many outstanding projects remaining to be investigated, geochemical and isotopic constraints of mantle-derived garnet peridotites and eclogites should provide an additional window to our understanding of mantle heterogeneity, metasomatism, slab/mantle interactions, and lithospheric evolution of the Sino-Korean craton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.