Abstract

Hydrothermal experiments combined with petrologic observations form the basis for a new two-stage model for the evolution of the pre-eruption Minoan magma chamber at Santorini, Greece. Ninety-nine percent of the erupted volume is two-pyroxene, rhyodacitic magma that had been stored at a temperature of ∼885 °C, based on magnetite-ilmenite and QUILF geothermometry. The rest of the volume is basaltic to andesitic magma, which occurs as 200 MPa. In addition, the composition of the plagioclase hosts (An56 ± 6) of the inclusions require temperatures of 825 ± 25 °C at pressures >200 MPa. This demonstrates that the Minoan rhyodacitic magma underwent a two-stage evolution, first crystallizing at ∼825∘C and >200 MPa, and then rinsing to a shallow ∼50 MPa storage region with a concomitant rise in temperature to ∼885 °C. We suggest that the episodic intrusion of mafic magmas provided the necessary heat and perhaps contributed to the ascent of the magma to shallow crustal depths where it reequilibrated before the cataclysmic eruption. Phase equilibria suggest that much of the heating of the rhyodacite occurred in the shallow storage region. Thermal budget calculations suggest that the rhyodacite magma could have been heated by intrusions of basalt rising at reasonable upwelling rates and injected into the storage zone over several hundred years. Preservation of amphibole in the mafic scoria indicate that injection of mafic magma continued up until days before the cataclysmic eruption, perhaps triggering the event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.