Abstract

The main purpose of this study was to degrade total petroleum hydrocarbons (TPHs) from contaminated soil in batch microcosm reactors. Native soil fungi isolated from the same petroleum-polluted soil and ligninolytic fungal strains were screened and applied in the treatment of soil-contaminated microcosms in aerobic conditions. The bioaugmentation processes were carried out using selected hydrocarbonoclastic fungal strains in mono or co-cultures. Results demonstrated the petroleum-degrading potential of six fungal isolates, namely KBR1 and KBR8 (indigenous) and KBR1-1, KB4, KB2 and LB3 (exogenous). Based on the molecular and phylogenetic analysis, KBR1 and KB8 were identified as Aspergillus niger [MW699896] and tubingensis [MW699895], while KBR1-1, KB4, KB2 and LB3 were affiliated with the genera Syncephalastrum sp. [MZ817958], Paecilomyces formosus [MW699897], Fusarium chlamydosporum [MZ817957] and Coniochaeta sp. [MW699893], respectively. The highest rate of TPH degradation was recorded in soil microcosm treatments (SMT) after 60 days by inoculation with Paecilomyces formosus 97 ± 2.54%, followed by bioaugmentation with the native strain Aspergillus niger (92 ± 1.83%) and then by the fungal consortium (84 ± 2.21%). The statistical analysis of the results showed significant differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.