Abstract

Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/ Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.