Abstract

Petrographic analysis is based on the microscopic description and classification of rocks and is a crucial technique for sedimentary and diagenetic studies. When compared to hand specimens, thin sections provide better and more accurate means for analysis of mineral proportion, distribution, texture, pore space analysis, and cement composition. Most petrographic analysis relies on visual inspection of rock thin sections under a microscope, a task that is laborious even for experienced geologists. Large projects with a tight time frame requiring the analysis of a large amount of thin sections may require multiple petrographers, thereby risking the introduction of inconsistency in the analysis. To address this challenge, we explore the use of deep convolutional neural networks (CNN) as a tool for acceleration and automatization of microfacies classification. We make use of transfer learning based on robust and reliable CNN models trained with a large amount of non-geological images. With a relatively small number of labeled thin sections used in “fine-tuning” training we are able to adapt CNN models that achieve low error levels (<5%) for the classification of microfacies from the same dataset, and moderate results (<40%) for the classification of microfacies of thin sections from different datasets. These alternate datasets differ from the training data on two independent factors: the thin sections are from different formations and are prepared by different laboratories. While becoming widely accepted as a useful tool in the biological and manufacturing disciplines, CNN is currently underutilized in the geoscience community; we foresee an increase of use of such techniques to help accelerate and quantify a wide variety of geological tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.