Abstract

Copolymers of methyl acrylate and acrylic acid were synthesized to fabricate membranes ionically crosslinked using aluminum acetylacetonate for the separation of toluene/ i-octane mixtures by pervaporation at high temperatures. The formation of the ionic crosslinking via bare aluminum cations was characterized by UV–VIS spectroscopy and solubility tests. Reproducibility and the reliability of the methodology for membrane formation and crosslinking were confirmed. The effects of acrylic acid content, crosslinking conditions, pervaporation temperature, and feed composition on the normalized flux and the selectivity for toluene/ i-octane mixtures were determined. A typical crosslinked membrane showed a normalized flux of 26 kg μm m −2 h −1 and a selectivity of 13 for a 50/50 wt.% feed mixture at 100°C. The pervaporation properties including solubility selectivity and diffusivity selectivity are discussed in terms of swelling behavior. The performance of the current membranes were benchmarked against other membrane materials reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.