Abstract

BackgroundPrevious reports have indicated that disrupting the Wnt/β-catenin pathway in dendritic cells (DCs) may affect the progression of autoimmune inflammation; however, the factors and timing that regulate Wnt/β-catenin signaling have not been clearly understood.MethodsExperimental autoimmune uveitis (EAU) mice and Vogt–Koyanagi–Harada disease (VKH) patient samples were used to detect the expression of Wnt/β-catenin pathway genes. Western blot, real-time PCR, flow cytometry, and ELISA were performed to examine the expression of components of the Wnt/β-catenin pathway and inflammatory factors. DC-specific β-catenin knockout mice and 6-bromoindirubin-3′-oxime (BIO) administered mice were used to observe the effect of disrupting the Wnt pathway on EAU pathogenesis.ResultsWnt/β-catenin signaling was inhibited in DCs during the induction phase of EAU. The inhibition was mediated by pertussis toxin (PTX), which promoted DC maturation, in turn promoting pathogenic T cell proliferation and differentiation. In vivo experiments confirmed that deleting β-catenin in DCs enhanced EAU severity, and pre-injection of PTX advanced EAU onset. Administration of a Wnt activator (BIO) limited the effects of PTX, in turn ameliorating EAU.ConclusionsOur results demonstrate that PTX plays a key role as a virulence factor in initiating autoimmune inflammation via DCs by inhibiting Wnt/β-catenin signaling in EAU, and highlight the potential mechanism by which infection can trigger apparent autoimmunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.