Abstract

BackgroundFalls are the leading cause of injuries among older adults. Perturbation-based balance training (PBT) is an innovative approach to fall prevention that aims to improve the reactive balance response following perturbations such as slipping and tripping. Many of these PBT studies have targeted reactive balance after slipping or tripping, despite both contributing to a large proportion of older adult falls. The goal of this randomized controlled trial was to evaluate the effects of PBT targeting slipping and tripping on laboratory-induced slips and trips. To build upon prior work, the present study included: 1) a control group; 2) separate training and assessment sessions; 3) PBT methods potentially more amenable for use outside the lab compared to methods employed elsewhere, and 4) individualized training for older adult participants.MethodsThirty-four community-dwelling, healthy older adults (61–75 years) were assigned to PBT or a control intervention using minimization. Using a parallel design, reactive balance (primary outcome) and fall incidence were assessed before and after four sessions of BRT or a control intervention involving general balance exercises. Assessments involved exposing participants to an unexpected laboratory-induced slip or trip. Reactive balance and fall incidence were compared between three mutually-exclusive groups: 1) baseline participants who experienced a slip (or trip) before either intervention, 2) post-control participants who experienced a slip (or trip) after the control intervention, and 3) post-PBT participants who experienced a slip (or trip) after PBT. Neither the participants nor investigators were blinded to group assignment.ResultsAll 34 participants completed all four sessions of their assigned intervention, and all 34 participants were analyzed. Regarding slips, several measures of reactive balance were improved among post-PBT participants when compared to baseline participants or post-control participants, and fall incidence among post-PBT participants (18%) was lower than among baseline participants (80%). Regarding trips, neither reactive balance nor fall incidence differed between groups.ConclusionsPBT targeting slipping and tripping improved reactive balance and fall incidence after laboratory-induced slips. Improvements were not observed after laboratory-induced trips. The disparity in efficacy between slips and trip may have resulted from differences in dosage and specificity between slip and trip training.Trial registrationName of Clinical Trial Registry:clinicaltrials.govTrial Registration number: NCT04308239.Date of Registration: March 13, 2020 (retrospectively registered).

Highlights

  • Falls are the leading cause of injuries among older adults

  • Peak slip speed among postPBT participants was a mean of 0.57 m/s [95% CI = 0.05, 1.10] lower than among post-control participants (p = .034; Table 3)

  • Minimum hip height among postPBT participants was a mean of 5.6% [1.1, 10.1] higher than among baseline participants (p = .014; Table 3)

Read more

Summary

Introduction

Falls are the leading cause of injuries among older adults. Perturbation-based balance training (PBT) is an innovative approach to fall prevention that aims to improve the reactive balance response following perturbations such as slipping and tripping. Examples of PBT for slipping have involved repeated exposure to slips while walking over a sliding platform [6], or a structured step-training regimen onto a low-friction surface [10] These types of PBT have elicited slip-reducing proactive gait adaptations, and improved recovery rates and reactive balance after laboratory-induced slips. Examples of PBT for tripping have involved repeated exposure to trips while walking over ground [12], using a cable system to impede forward foot motion while walking on a treadmill [13], or simulated trips while standing on a specialized treadmill [5, 14] These types of PBT have elicited improved kinematics and fall rates after laboratory-induced trips [5, 15], and reduced trip-induced falls outside of the laboratory [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.