Abstract
In response to apoptotic stimuli, cytochrome c, an inter-membrane space protein is released from mitochondria to activate the cascade of caspases that leads to apoptosis. Recent evidence suggests that cytochrome c interacts with tRNA in the cytoplasm and this interaction was shown to inhibit the caspase mediated apoptotic process. Interestingly, cytochrome c does not contain any putative RNA binding domain. In this report, we sought to define the structural component of cytochrome c that is involved in binding of tRNA. By using gel mobility shift assays, we show that holocytochrome c can interact with tRNA but not apocytochrome c that lacks the heme domain suggesting that heme is essential for the interaction of cytochrome c to tRNA. In addition, using in vitro cross linking and circular dichroism spectroscopic studies, we show that cytochrome c can undergo heme mediated oligomerization. Prevention of heme mediated oligomerization of cytochrome c by potassium ferricyanide treatment prevents the binding of tRNA and promotes caspase activation. Our studies provide a novel regulation of apoptosis by heme dependent tRNA interaction to cytochrome c.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.