Abstract

In this note, we study, formalize, and generalize the pure spinor superfield formalism from a rather nontraditional perspective. To set the stage, we review the notion of a multiplet for a general super Lie algebra, working in the context of the BV and BRST formalisms. Building on this, we explain how the pure spinor superfield formalism can be viewed as constructing a supermultiplet out of the input datum of an equivariant graded module over the ring of functions on the nilpotence variety. We use the homotopy transfer theorem and other computational techniques from homological algebra to relate these multiplets to more standard component-field formulations. Physical properties of the resulting multiplets can then be understood in terms of algebrogeometric properties of the nilpotence variety. We illustrate our discussion with many examples in various dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.