Abstract

The rapidly increasing global demand for energy poses a significant challenge for the oil and gas industries, necessitating a delicate balance between meeting this demand and reducing greenhouse gas (GHG) emissions. In this context, identifying a method that can effectively convert or utilize GHGs while simultaneously enhancing energy efficiency is crucial. Converting GHG into liquid solvent for enhanced oil recovery (EOR) appears to be an efficacious strategy. Herein, dimethyl ether (DME) as a renewable solvent from GHG capture and utilization with its cyclic pathways is proposed, where a) DME production begins with the capture and conversion of GHGs, potentially resulting in a zero-carbon production process through the integration of renewable energy sources and carbon capture technologies; b) DME acts as a versatile fuel that can be blended with conventional fuels or used in its pure form in engines, substantially reducing transportation emissions due to DME's low carbon content and clean burning characteristics; c) DME's distinctive oil-water phase behavior significantly enhances its efficacy in both heavy oil thermal recovery and light oil water flooding processes; d) the solubility of DME in water mitigates solvent losses, thereby promoting more efficient subsurface and surface solvent recovery operations; and e) DME can be hydrolyzed to produce hydrogen, making it a viable transitional fuel. This perspective concludes by discussing the challenges and opportunities in the energy field to guide future research. These prospects include a) elucidating the renewable and functional properties of DME in innovative EOR mechanisms; b) providing strategic insights for the oil industry on emission reductions in upstream transportation, EOR, and post-EOR solvent recovery through a comprehensive DME pathway; and c) exploring the potential of DME as a transitional solvent for GHG reduction and hydrogen production within the broader context of the energy transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.