Abstract
Despite incremental improvements in the field of tissue engineering, no technology is currently available for producing completely autologous implants where both the cells and the scaffolding material are generated from the patient, and thus do not provoke an immune response that may lead to implant rejection. Here, a new approach is introduced to efficiently engineer any tissue type, which its differentiation cues are known, from one small tissue biopsy. Pieces of omental tissues are extracted from patients and, while the cells are reprogrammed to become induced pluripotent stem cells, the extracellular matrix is processed into an immunologically matching, thermoresponsive hydrogel. Efficient cell differentiation within a large 3D hydrogel is reported, and, as a proof of concept, the generation of functional cardiac, cortical, spinal cord, and adipogenic tissue implants is demonstrated. This versatile bioengineering approach may assist to regenerate any tissue and organ with a minimal risk for immune rejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.