Abstract

The recent development of 3D printing techniques enables novel applications in customized food fabrication. Based on a tailor-made 3D food printer, we present a novel personalized food printing framework driven by portrait images. Unlike common 3D printers equipped with materials such as ABS, Nylon and SLA, our printer utilizes edible materials such as maltose, chocolate syrup, jam to print customized patterns. Our framework automatically converts an arbitrary input image into an optimized printable path to facilitate food printing, while preserving the prominent features of the image. This is achieved based on two key stages. First, we apply image abstraction techniques to extract salient image features. Robust face detection and sketch synthesis are optionally involved to enhance face features for portrait images. Second, we present a novel path optimization algorithm to generate printing path for efficient and feature-preserving food printing. We demonstrate the efficiency and efficacy of our framework using a variety of images and also a comparison with non-optimized results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.