Abstract

Epigenetic regulation of gene expression allows the organism to respond/adapt to environmental conditions without changing the gene coding sequence. Epigenetic modifications have also been found to control gene expression in various diseases, including diabetes. Epigenetic changes induced by hyperglycemia in multiple target organs contribute to metabolic memory of diabetic complications. The long-lasting development of diabetic complications even after achieving glucose control has been partly attributed to epigenetic changes in target cells. Specific epigenetic drugs might rescue chromatin conformation associated to hyperglycemia possibly slowing down the onset of diabetes-related complications. The current review will describe the updated epigenetics in diabetes that can be used to personalize a more focused treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.