Abstract
In recent years, person reidentification has received growing attention with the increasing popularity of intelligent video surveillance. This is because person reidentification is critical for human tracking with multiple cameras. Recently, keep it simple and straightforward (KISS) metric learning has been regarded as a top level algorithm for person reidentification. The covariance matrices of KISS are estimated by maximum likelihood (ML) estimation. It is known that discriminative learning based on the minimum classification error (MCE) is more reliable than classical ML estimation with the increasing of the number of training samples. When considering a small sample size problem, direct MCE KISS does not work well, because of the estimate error of small eigenvalues. Therefore, we further introduce the smoothing technique to improve the estimates of the small eigenvalues of a covariance matrix. Our new scheme is termed the minimum classification error-KISS (MCE-KISS). We conduct thorough validation experiments on the VIPeR and ETHZ datasets, which demonstrate the robustness and effectiveness of MCE-KISS for person reidentification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.