Abstract

The persistent photoinduced magnetization (PPM) in the low bandwidth material Pr1−xCaxMnO3 at the low hole doping level of x = 0.1 is reported. Upon zero-field cooling under photoexcitation, significant improvement of the ferromagnetic (FM) ordering was observed in the low temperature spin-glass phase. However, upon field cooling, the FM ordering was found to be suppressed due to weakening of the double-exchange interaction. High kinetic energy x-ray photoelectron spectroscopy measurements indicated a slight increase in the Mn3+ peak under photoexcitation which clarifies the weakening of the FM interaction. The fast relaxation of the PPM is discussed in view of localization of spin polarons in sites of magnetic disorders and the results are compared with previous reports of PPM in intermediate bandwidth La0.9Ca0.1MnO3 samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.