Abstract

Serious ochratoxin A (OTA) contamination necessitates the development of rapid, sensitive and selective analytical methods for its determination in food safety. Herein, we report a persistent luminescence resonance energy transfer (LRET) based aptasensor for the autofluorescence-free detection of OTA. OTA aptamer functionalized persistent luminescence nanorod (PLNR) Zn2GeO4:Mn2+ and the aptamer complementary DNA modified gold nanoparticle (AuNP) were used as the donor and the acceptor, respectively. The developed LRET aptasensor integrated the advantages of the long-lasting persistent luminescence of PLNR, the high selectivity of aptamer and the low probe background of LRET sensors, allowing autofluorescence-free detection of OTA in biological samples with high sensitivity and selectivity. The developed LRET aptasensor gave an excellent linearity in the range of 0.01–10 ng mL−1, the detection limit of 3 pg mL−1 and the precision of 2.7% (RSD, n = 11) at 1 ng mL−1 level. The applicability of the developed aptasensor was demonstrated by analyzing beer samples for OTA with the recoveries of 92.3%–104%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.