Abstract

In laboratory incubation studies with three soils of varying physicochemical characteristics, phorate was more persistent in nonflooded (60% water holding capacity) soils than in flooded soils. Phorate sulphoxide was recovered as the only metabolite of phorate in nonflooded soils while three metabolites (diethyl dithiophosphate, triethyl dithiophosphate and an unidentified metabolite) were formed in flooded soils. Study indicates that in nonflooded soils phorate is degraded via oxidation while in flooded soils hydrolysis is the major degradation process. Degradation of phorate was accelerated by an increase in incubation temperature. Preexposure or repeated application of soils to phorate slightly decreased the persistence of phorate or its metabolites. Decreased persistence of phorate and its metabolites formed in nonsterile soils compared to sterile soils suggested the role of microorganisms in their transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.