Abstract
Dendritic cells (DCs), essential for the initiation and regulation of adaptive immune responses, have been used as anticancer vaccines. DCs may also directly trigger tumor cell death. In the current study, we have investigated the tumoricidal and immunostimulatory activities of mouse bone marrow-derived DCs. Our results indicate that these cells acquire killing capabilities toward tumor cells only when activated with LPS or Pam3Cys-SK4. Using different transgenic mouse models including inducible NO synthase or GP91 knockout mice, we have further established that LPS- or Pam3Cys-SK4-activated DC killing activity involves peroxynitrites. Importantly, after killing of cancer cells, DCs are capable of engulfing dead tumor cell fragments and of presenting tumor Ags to specific T lymphocytes. Thus, upon specific stimulation, mouse bone marrow-derived DCs can directly kill tumor cells through a novel peroxynitrite-dependent mechanism and participate at virtually all levels of antitumor immune responses, which reinforces their interest in immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.