Abstract

Single-atom catalysts have drawn increasing attention in advanced oxidation due to their unique structure and significant promise in heterogeneous catalysis. Herein, single-atom iron anchored on nitrogen-doped carbon (SAFe-N-C) was synthesized with iron phthalocyanine (FePc) and metal-organic framework (ZIF-8). With thermal treatment and acid leaching, atomically-dispersed Fe-Nx sites were successfully formed on the surface of N-C support derived from ZIF-8. The prepared catalyst was demonstrated to activate peroxydisulfate (PDS) for chloramphenicol (CAP) degradation. Compared with N-C, the SAFe-N-C shows 6 times enhanced removal efficiency (from 15.3% to 93.1%) for CAP. Moreover, the catalyst shows high catalytic activity in a wide pH range of 5 to 9 and good resistance to inorganic anions, in which a singlet oxygen-dominated process is found. This study reveals the role of single-atom site in singlet oxygen evolution and offers a new catalytic approach for selective removal of organic pollutants in complex water matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.