Abstract
Peroxisomes massively proliferate in the methylotrophic yeast Candida boidinii when cultured on methanol as the only carbon and energy source. These organelles contain enzymes that catalyze the initial reactions of methanol utilization. The membranes contain abundant proteins of unknown function; their apparent molecular masses are 20, 31, 32 and 47 x 10(3) Mr and are termed PMP20, PMPs31-32 and PMP47. Recently, we reported that peroxisomes in this yeast are also induced by oleic acid and D-alanine as carbon sources, and that these peroxisomes contain increased concentrations of the enzymes of fatty acid beta-oxidation or D-amino acid oxidase, respectively. This report extends these findings and further compares the enzyme composition from peroxisomes induced by methanol, oleic acid and D-alanine. the patterns of matrix proteins represented on SDS-polyacrylamide gels from peroxisomes induced by oleic acid or D-alanine were found to be very different from those of peroxisomes induced by methanol. In order to differentiate between membrane proteins that have specific functions in pathways of substrate utilization from those with more generalized functions, peroxisomal membranes from cultures grown on methanol, oleic acid or D-alanine were purified. Analysis of these fractions demonstrated that while PMP20 is found only in peroxisomes induced by methanol, the PMPs31-32 and PMP47 were the abundant peroxisomal membrane proteins (PMP) regardless of inducing substrate. The data strongly suggest that the function of PMP20 is related to methanol metabolism. In contrast, the functions of PMPs31-32 and PMP47 are 'substrate-nonspecific'. We speculate that they may relate to the structure, assembly or general function of the organelle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.