Abstract

Autophagy is a major pathway of intracellular degradation mediated by formation of autophagosomes. Recently, autophagy was implicated in the degradation of intracellular bacteria, whose size often exceeds the capacity of normal autophagosomes. However, the adaptations of the autophagic machinery for sequestration of large cargos were unknown. Here we developed a yeast model system to study the effect of cargo size on the requirement of autophagy-related (Atg) proteins. We controlled the size of peroxisomes before their turnover by pexophagy, the selective autophagy of peroxisomes, and found that peroxisome size determines the requirement of Atg11 and Atg26. Small peroxisomes can be degraded without these proteins. However, Atg26 becomes essential for degradation of medium peroxisomes. Additionally, the pexophagy-specific phagophore assembly site, organized by the dual interaction of Atg30 with functionally active Atg11 and Atg17, becomes essential for degradation of large peroxisomes. In contrast, Atg28 is partially required for all autophagy-related pathways independent of cargo size, suggesting it is a component of the core autophagic machinery. As a rule, the larger the cargo, the more cargo-specific Atg proteins become essential for its sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.