Abstract

An electropolymerized layer of a C60 fullerene derivative was successfully used as selective contact and electron transport layer in perovskite solar cells. The electropolymeric film was formed over FTO electrodes by an electrochemical methodology in just one step. The light emission of perovskite films formed over the electropolymer was quenched, confirming an efficient electron transfer from the perovskite to the electropolymerized C60 layer. Solar cells constructed with C60 polymer layer showed a much better performance compared with the same cell without the fullerene containing electropolymer layer. The best non-optimized device presented an efficiency of 11.0%, with an open circuit voltage of 969 mV, a short circuit current of 17 mA/cm2, and a fill factor of 65%. These results demonstrated that the use of an electrochemical methodology in the formation of an organic electron transport layers as replacement of metal oxides in perovskite solar cells opens a new approach in the fabrication of efficient energy conversion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.