Abstract
AbstractThe optical and electronic properties of noble metallic nanoparticles can be exploited to enhance the performance of inorganic/organic photodetectors. In this work, a uniformly distributed layer of Au nanorods (AuNRs) is integrated into vertically structured perovskite photoconductive photodetectors and, as a result, perovskite–AuNR hybrid photodetectors that exhibit significant photocurrent enhancements are reported. Ultimately it achieves a responsivity of ≈320 A W−1 at a low driving voltage of −1 V. This is an improvement of 60% compared to the responsivity of pristine devices (≈200 A W−1). The high responsivity and low driving voltage place this device among the highest performing perovskite‐based thin‐film photoconductive photodetectors reported. The stability and linearity of the photoresponse following repeated light/dark cycles are characterized. The hybrid device also shows a fast response (with the decay time of ≈95 ns) compared to pristine devices (≈230 ns). The improvements in photodetection performance are attributed to plasmon‐enhanced optical absorption, as well as advances in charge extraction and transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.