Abstract
Here we report the first spectroscopic alpha particle detection based on CsPbBr3 detectors with asymmetric contacts. The CsPbBr3 single crystal was grown from the melt using Bridgman method and then fabricated into detectors with different contacts. The In/CsPbBr3/Au detector presented a low dark current density (∼100 nA/cm2) and temporal stable performance under high electric field (1000 V/cm). Such detector demonstrated excellent gamma ray resolving capability with a full-width at half maximum (FWHM) of ∼5.9 keV for the57Co 122 keV γ ray. The CsPbBr3 detector was capable of simultaneously resolving both the alpha particle (5.5 MeV) and γ ray (59.5 keV) peaks from 241Am radioactive isotope. The transport properties of CsPbBr3 were then determined based on the alpha particle spectra and corresponding rise time distributions. The equivalent values of electron and hole mobilities were indicated as 63 and 49 cm2/(V ⋅ s) respectively. The calculated electron and hole mobility-lifetime products were 4.5 × 10−4 and 9.5 × 10−4 cm2/V, respectively, demonstrating superior transport properties of holes over electrons in CsPbBr3. This work widens the scope of perovskite detectors to encompass charged radiation as well as high energy X/γ rays, and will significantly promote and guide further studies on perovskite materials for radiation detection applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.