Abstract

The objective was to study the interaction of the components of a complex liquid mixture on the permeation parameters of its constituents. A firearm cleaning solvent, Hoppes No. 9 Gun Bore Cleaner, was selected to challenge two varieties of disposable nitrile gloves, the thinnest (Kimberly-Clark Lavender) and thickest (Kimberly-Clark Blue), using the closed-loop ASTM F739 cell without recirculation and n-decane collection followed by quantitation of the permeated compounds using capillary gas chromatography–mass spectrometry. The thicker Blue glove resisted the permeation of Hoppe’s relative to the thinner Lavender glove as shown by 3.2 times more mass permeated by the Lavender glove at 60 min despite the same standardized breakthrough times (7.5 ± 2.5 min). The kerosene fraction permeated faster at a much higher rate than expected. The Kimberly-Clark disposable nitrile glove chemical resistance guide lists a breakthrough time for kerosene of 82 min for Sterling disposable nitrile glove material. However, for Hoppe’s the kerosene components appeared at the standardized breakthrough time. Mixture components that were reported by the glove manufacturer to quickly permeate the disposable nitrile material, such as ethanol, did not permeate at a rate slower than expected, indicative of a possible carrier function. A semiquantitative risk assessment confirmed the unacceptability of both gloves. Persons using personal protective equipment, such as gloves, may not be afforded the expected resistance to chemical permeation when chemicals are in a suitable mixture, hence enhancing the risk of exposure. More research is needed to produce better glove testing measures to ensure the safety of workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.